Search results for "Common Mycorrhizal Network"
showing 3 items of 3 documents
Mycorrhizae differentially influence the transfer of nitrogen among associated plants and their competitive relationships
2021
Abstract The formation of a common mycorrhizal network among roots of different plant species growing close to each other can influence plant community dynamics, regulating plant relationships through the differential transfer of nutrients from one plant to another. However, knowledge of the mechanisms that regulate this process is poor. Here we quantify the contribution of arbuscular mycorrhizae to the transfer of N among heterospecific plants growing adjacent to each other and examine whether the differential transfer of N within the plant community via mycorrhizae can alter competitive relationships among plant species. Plants of four species (wheat, pea, flax, and chicory) were grown in…
Faster acquisition of symbiotic partner by common mycorrhizal networks in early plant life stage
2016
Arbuscular mycorrhizal (AM) fungi usually improve plant performance yet our knowledge about their effects on seed germination and early plant establishment is very limited. We performed a factorial greenhouse experiment where the seeds from four low Arctic cooccurring mycorrhizal herbs (Antennaria dioica, Campanula rotundifolia, Sibbaldia procumbens, and Solidago virgaurea) were germinated alone or in the vicinity of an adult Sibbaldia plant with or without AM fungi; given either as spores or being present in a common mycorrhizal network (CMN). Three different AM fungal species were examined to assess species-specific differences in symbiont acquisition rate. Out of the four plant species i…
Carbon partitioning in a walnut-maize agroforestry system through arbuscular mycorrhizal fungi
2020
National audience; In tree-based intercropping systems, roots of trees and crops are interacting and could influence ecosystem services provided by soil microorganisms. Here, the analysis of diversity of arbuscular mycorrhiza fungi (AMF) associated with roots of walnut and maize reveals differences. Of interest, Funneliformis genus is mainly associated with maize roots, and one OTU related to an uncultured Glomus, might form a common mycorrhizal network linking roots of both plants. In addition, the analysis of 13C of mycelium living in the surrounding environment of roots, suggest that part of the carbon derived from walnut trees could be transferred to maize plants. Our results suggest th…